Kite in square part 15

Page 231

For example, the nutrient rich water supports large populations of pollutant-tolerant Chironomidae, which in-turn attract insectivorous bats. These insects accumulate toxins in their exoskeletons and pass them on to insectivorous birds and bats. As a result, metals may accumulate in the tissues and organs of these animals, resulting in DNA damage, and histopathological lesions. Furthermore, this altered diet of fat-rich prey may cause changes in energy storage and hormone production, which may have significant impacts on torpor, reproduction, metabolism and survival. Biological contaminants such as bacteria, viruses and fungi in wastewater can also be transferred to the surrounding ecosystem. Insects emerging from this wastewater may spread pathogens to nearby water sources. Pathogens, shed from humans, can be passed from this wastewater to organisms foraging at these treatment plants. This may lead to bacterial and viral infections or microbiome dysbiosis. Global warming : the result of increasing atmospheric carbon dioxide concentrations which is caused primarily by the combustion of fossil energy sources such as petroleum, coal, and natural gas, and to an unknown extent by destruction of forests, increased methane, volcanic activity and cement production. Such massive alteration of the global carbon cycle has only been possible because of the availability and deployment of advanced technologies, ranging in application from fossil fuel exploration, extraction, distribution, refining, and combustion in power plants and automobile engines and advanced farming practices. Livestock contributes to climate change both through the production of greenhouse gases and through destruction of carbon sinks such as rain-forests. According to the 2006 United Nations/FAO report, 18% of all greenhouse gas emissions found in the atmosphere are due to livestock. The raising of livestock and the land needed to feed them has resulted in the destruction of millions of acres of rainforest and as global demand for meat rises, so too will the demand for land. Ninety-one percent of all rainforest land deforested since 1970 is now used for livestock. Potential negative environmental impacts caused by increasing atmospheric carbon dioxide concentrations are rising global air temperatures, altered hydrogeological cycles resulting in more frequent and severe droughts, storms, and floods, as well as sea level rise and ecosystem disruption.

Page 232

The fossils that are burned by humans for energy usually come back to them in the form of acid rain. Acid rain is a form of precipitation which has high sulfuric and nitric acids which can occur in the form of a fog or snow. Acid rain has numerous ecological impacts on streams, lakes, wetlands and other aquatic environments. It damages forests, robs the soil of its essential nutrients, releases aluminium to the soil, which makes it very hard for trees to absorb water. Researchers have discovered that kelp, eelgrass and other vegetation can effectively absorb carbon dioxide and hence reducing ocean acidity. Scientists, therefore, say that growing these plants could help in mitigating the damaging effects of acidification on marine life.

Ozone depletion consists of two related events observed since the late 1970s: a steady lowering of about four percent in the total amount of ozone in Earth's atmosphere (the ozone layer), and a much larger springtime decrease in stratospheric ozone around Earth's polar regions. The latter phenomenon is referred to as the ozone hole. There are also springtime polar tropospheric ozone depletion events in addition to these stratospheric events. The main cause of ozone depletion and the ozone hole is manufactured chemicals, especially manufactured halocarbon refrigerants, solvents, propellants, and foam- blowing agents (chlorofluorocarbons (CFCs), HCFCs, halons), referred to as ozone-depleting substances (ODS). These compounds are transported into the stratosphere by turbulent mixing after being emitted from the surface, mixing much faster than the molecules can settle. Once in the stratosphere, they release atoms from the halogen group through photodissociation, which catalyze the breakdown of ozone (O3) into oxygen (O2). Both types of ozone depletion were observed to increase as emissions of halocarbons increased.

Page 233

Ozone depletion and the ozone hole have generated worldwide concern over increased cancer risks and other negative effects. The ozone layer prevents most harmful wavelengths of ultraviolet (UV) light from passing through the Earth's atmosphere. These wavelengths cause skin cancer, sunburn, permanent blindness, and cataracts, which were projected to increase dramatically as a result of thinning ozone, as well as harming plants and animals. These concerns led to the adoption of the Montreal Protocol in 1987, which bans the production of CFCs, halons, and other ozone-depleting chemicals. The ban came into effect in 1989. Ozone levels stabilized by the mid-1990s and began to recover in the 2000s, as the shifting of the jet stream in the southern hemisphere towards the south pole has stopped and might even be reversing. Recovery is projected to continue over the next century, and the ozone hole is expected to reach pre-1980 levels by around 2075. In 2019, NASA reported that the ozone hole was the smallest ever since it was first discovered in 1982. The Montreal Protocol is considered the most successful international environmental agreement to date. disruption of the nitrogen cycle : Of particular concern is N2O, which has an average atmospheric lifetime of 114–120 years, and is 300 times more effective than CO2 as a greenhouse gas. NOx produced by industrial processes, automobiles and agricultural fertilization and NH3 emitted from soils (i.e., as an additional byproduct of nitrification) and livestock operations are transported to downwind ecosystems, influencing N cycling and nutrient losses. Six major effects of NOx and NH3 emissions have been identified:

1. decreased atmospheric visibility due to ammonium aerosols (fine particulate matter [PM])

2. elevated ozone concentrations

3. ozone and PM affects human health (e.g. respiratory diseases, cancer)

4. increases in radiative forcing and global warming

5. decreased agricultural productivity due to ozone deposition

6. ecosystem acidification

Page 234

Mining industry : The environmental impact of mining includes erosion, formation of sinkholes, loss of biodiversity, and contamination of soil, groundwater and surface water by chemicals from mining processes. In some cases, additional forest logging is done in the vicinity of mines to increase the available room for the storage of the created debris and soil. Even though plants need some heavy metals for their growth, excess of these metals is usually toxic to them. Plants that are polluted with heavy metals usually depict reduced growth, yield and performance. Pollution by heavy metals decreases the soil organic matter composition resulting in a decline in soil nutrients which then leads to a decline in the growth of plants or even death. Besides creating environmental damage, the contamination resulting from leakage of chemicals also affect the health of the local population. Mining companies in some countries are required to follow environmental and rehabilitation codes, ensuring the area mined is returned to close to its original state. Some mining methods may have significant environmental and public health effects. Heavy metals usually exhibit toxic effects towards the soil biota, and this is through the affection of the microbial processes and decreases the number as well as activity of soil microorganisms. Low concentration of heavy metals also has high chances of inhibiting the plant's physiological metabolism

Page 235

Energy industry: The environmental impact of energy harvesting and consumption is diverse. In recent years there has been a trend towards the increased commercialization of various renewable energy sources. In the real world, consumption of fossil fuel resources leads to global warming and climate change. However, little change is being made in many parts of the world. If the peak oil theory proves true, more explorations of viable alternative energy sources, could be more friendly to the environment. Rapidly advancing technologies can achieve a transition of energy generation, water and waste management, and food production towards better environmental and energy usage practices using methods of systems ecology and industrial ecology. Biodiesel : The environmental impact of biodiesel includes energy use, greenhouse gas emissions and some other kinds of pollution. A joint life cycle analysis by the US Department of Agriculture and the US Department of Energy found that substituting 100% biodiesel for petroleum diesel in buses reduced life cycle consumption of petroleum by 95%. Biodiesel reduced net emissions of carbon dioxide by 78.45%, compared with petroleum diesel. In urban buses, biodiesel reduced particulate emissions 32 percent, carbon monoxide emissions 35 percent, and emissions of sulfur oxides 8%, relative to life cycle emissions associated with use of petroleum diesel. Life cycle emissions of hydrocarbons were 35% higher and emission of various nitrogen oxides (NOx) were 13.5% higher with biodiesel. Life cycle analyses by the Argonne National Laboratory have indicated reduced fossil energy use and reduced greenhouse gas emissions with biodiesel, compared with petroleum diesel use. Biodiesel derived from various vegetable oils (e.g. canola or soybean oil), is readily biodegradable in the environment compared with petroleum diesel.

Page 236

Coal mining and burning : The environmental impact of coal mining and -burning is diverse.[166] Legislation passed by the US Congress in 1990 required the United States Environmental Protection Agency (EPA) to issue a plan to alleviate toxic air pollution from coal-fired power plants. After delay and litigation, the EPA now has a court-imposed deadline of 16 March 2011, to issue its report. Electricity generation: Electric power systems consist of generation plants of different energy sources, transmission networks, and distribution lines. Each of these components can have environmental impacts at multiple stages of their development and use including in their construction, during the generation of electricity, and in their decommissioning and disposal. We can split these impacts into operational impacts (fuel sourcing, global atmospheric and localized pollution) and construction impacts (manufacturing, installation, decommissioning, and disposal). This page looks exclusively at the operational environmental impact of electricity generation. The page is organized by energy source and includes impacts such as water usage, emissions, local pollution, and wildlife displacement. Nuclear power: The environmental impact of nuclear power results from the nuclear fuel cycle processes including mining, processing, transporting and storing fuel and radioactive fuel waste. Released radioisotopes pose a health danger to human populations, animals and plants as radioactive particles enter organisms through various transmission routes. Radiation is a carcinogen and causes numerous effects on living organisms and systems.

Page 237

The environmental impacts of nuclear power plant disasters such as the Chernobyl disaster, the Fukushima Daiichi nuclear disaster and the Three Mile Island accident, among others, persist indefinitely, though several other factors contributed to these events including improper management of fail safe systems and natural disasters putting uncommon stress on the generators. The radioactive decay rate of particles varies greatly, dependent upon the nuclear properties of a particular isotope. Radioactive Plutonium-244 has a half-life of 80.8 million years, which indicates the time duration required for half of a given sample to decay, though very little plutonium-244 is produced in the nuclear fuel cycle and lower half-life materials have lower activity thus giving off less dangerous radiation. Oil shale industry : The environmental impact of the oil shale industry includes the consideration of issues such as land use, waste management, water and air pollution caused by the extraction and processing of oil shale. Surface mining of oil shale deposits causes the usual environmental impacts of open-pit mining. In addition, the combustion and thermal processing generate waste material, which must be disposed of, and harmful atmospheric emissions, including carbon dioxide, a major greenhouse gas. Experimental in-situ conversion processes and carbon capture and storage technologies may reduce some of these concerns in future, but may raise others, such as the pollution of groundwater. Petroleum: The environmental impact of petroleum is often negative because it is toxic to almost all forms of life. Petroleum, a common word for oil or natural gas, is closely linked to virtually all aspects of present society, especially for transportation and heating for both homes and for commercial activities.

Page 238

Reservoirs : The environmental impact of reservoirs is coming under ever increasing scrutiny as the world demand for water and energy increases and the number and size of reservoirs increases. Dams and the reservoirs can be used to supply drinking water, generate hydroelectric power, increasing the water supply for irrigation, provide recreational opportunities and flood control. However, adverse environmental and sociological impacts have also been identified during and after many reservoir constructions. Although the impact varies greatly between different dams and reservoirs, common criticisms include preventing sea-run fish from reaching their historical mating grounds, less access to water downstream, and a smaller catch for fishing communities in the area. Advances in technology have provided solutions to many negative impacts of dams but these advances are often not viewed as worth investing in if not required by law or under the threat of fines. Whether reservoir projects are ultimately beneficial or detrimental—to both the environment and surrounding human populations— has been debated since the 1960s and probably long before that. In 1960 the construction of Llyn Celyn and the flooding of Capel Celyn provoked political uproar which continues to this day. More recently, the construction of Three Gorges Dam and other similar projects throughout Asia, Africa and Latin America have generated considerable environmental and political debate.

Page 239

Wind power : The environmental impact of wind power is relatively minor when compared to that of fossil fuel power. Compared with other low-carbon power sources, wind turbines have one of the lowest global warming potentials per unit of electrical energy generated by any power source. According to the IPCC, in assessments of the life-cycle global warming potential of energy sources, wind turbines have a median value of between 15 and 11 (gCO2eq/kWh) depending on whether offshore or onshore turbines are being assessed. Onshore wind farms can have significant impacts on the landscape,as typically they need to be spread over more land than other power stations and need to be built in wild and rural areas, which can lead to "industrialization of the countryside"and habitat loss.Conflicts arise especially in scenic and culturally-important landscapes. Siting restrictions (such as setbacks) may be implemented to limit the impact. The land between the turbines and access roads can still be used for farming and grazing.

Habitat loss and fragmentation are the greatest impacts of wind farms on wildlife, but they can be mitigated if proper monitoring and mitigation strategies are implemented.Wind turbines, like many other human activities and buildings, also increase the death rate of avian creatures such as birds and bats. A summary of the existing field studies compiled in 2010 from the National Wind Coordinating Collaborative identified fewer than 14 and typically less than four bird deaths per installed megawatt per year, but a wider variation in the number of bat deaths Like other investigations, it concluded that some species (e.g. migrating bats and songbirds) are known to be harmed more than others and that factors such as turbine siting can be important. However, many details, as well as the overall impact from the growing number of turbines, remain unclear. The National Renewable Energy Laboratory maintains a database of the scientific literature on the subject.

Page 240

Wind turbines also generate noise, and at a residential distance of 300 metres (980 ft) this may be around 45 dB; however, at a distance of 1.5 km (1 mi), most wind turbines become inaudible. Loud or persistent noise increases stress which could then lead to diseases. Wind turbines do not affect human health with their noise when properly placed. However, when improperly sited, data from the monitoring of two groups of growing geese revealed substantially lower body weights and higher concentrations of a stress hormone in the blood of the first group of geese who were situated 50 meters away compared to a second group which was at a distance of 500 meters from the turbine. Manufacturing: Nanotechnology's environmental impact can be split into two aspects: the potential for nanotechnological innovations to help improve the environment, and the possibly novel type of pollution that nanotechnological materials might cause if released into the environment. As nanotechnology is an emerging field, there is great debate regarding to what extent industrial and commercial use of nanomaterials will affect organisms and ecosystems. Paint : The environmental impact of paint is diverse. Traditional painting materials and processes can have harmful effects on the environment, including those from the use of lead and other additives. Measures can be taken to reduce environmental impact, including accurately estimating paint quantities so that wastage is minimized, use of paints, coatings, painting accessories and techniques that are environmentally preferred. The United States Environmental Protection Agency guidelines and Green Star ratings are some of the standards that can be applied.

Page 241

Paper: A pulp and paper mill in New Brunswick, Canada. Although pulp and paper manufacturing requires large amounts of energy, a portion of it comes from burning wood residue. The environmental effects of paper are significant, which has led to changes in industry and behaviour at both business and personal levels. With the use of modern technology such as the printing press and the highly mechanized harvesting of wood, disposable paper became a relatively cheap commodity, which led to a high level of consumption and waste. The rise in global environmental issues such as air and water pollution, climate change, overflowing landfills and clearcutting have all lead to increased government regulations. There is now a trend towards sustainability in the pulp and paper industry as it moves to reduce clear cutting, water use, greenhouse gas emissions, fossil fuel consumption and clean up its influence on local water supplies and air pollution. According to a Canadian citizens' organization, "People need paper products and we need sustainable, environmentally safe production. Environmental product declarations or product scorecards are available to collect and evaluate the environmental and social performance of paper products, such as the Paper Calculator, Environmental Paper Assessment Tool (EPAT),or Paper Profile. Plastics : Some scientists suggest that by 2050 there could be more plastic than fish in the oceans.[198] A December 2020 study published in Nature found that human-made materials, or anthropogenic mass, exceeds all living biomass on earth, with plastic alone outweighing the mass of all terrestrial and marine animals combined.

Page 242

Pesticides : The environmental impact of pesticides is often greater than what is intended by those who use them. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, including nontarget species, air, water, bottom sediments, and food.Pesticide contaminates land and water when it escapes from production sites and storage tanks, when it runs off from fields, when it is discarded, when it is sprayed aerially, and when it is sprayed into water to kill algae. The amount of pesticide that migrates from the intended application area is influenced by the particular chemical's properties: its propensity for binding to soil, its vapor pressure, its water solubility, and its resistance to being broken down over time, Factors in the soil, such as its texture, its ability to retain water, and the amount of organic matter contained in it, also affect the amount of pesticide that will leave the area.Some pesticides contribute to global warming and the depletion of the ozone layer. Pharmaceuticals and personal care:

A vervet monkey with a stolen box of aspirin that was not securely stored

The environmental effect of pharmaceuticals and personal care products (PPCPs) is being investigated since at least the 1990s. PPCPs include substances used by individuals for personal health or cosmetic reasons and the products used by agribusiness to boost growth or health of livestock. More than twenty million tons of PPCPs are produced every year.The European Union has declared pharmaceutical residues with the potential of contamination of water and soil to be "priority substances". PPCPs have been detected in water bodies throughout the world. More research is needed to evaluate the risks of toxicity, persistence, and bioaccumulation, but the current state of research shows that personal care products impact over the environment and other species, such as coral reefs and fish. PPCPs encompass environmental persistent pharmaceutical pollutants (EPPPs) and are one type of persistent organic pollutants. They are not removed in conventional sewage treatment plants but require a fourth treatment stage which not many plants have.

Page 243

Shipping : The environmental impact of shipping includes greenhouse gas emissions and oil pollution. In 2007, carbon dioxide emissions from shipping were estimated at 4 to 5% of the global total, and estimated by the International Maritime Organization (IMO) to rise by up to 72% by 2020 if no action is taken. There is also a potential for introducing invasive species into new areas through shipping, usually by attaching themselves to the ship's hull. The First Intersessional Meeting of the IMO Working Group on Greenhouse Gas Emissions from Ships took place in Oslo, Norway on 23–27 June 2008. It was tasked with developing the technical basis for the reduction mechanisms that may form part of a future IMO regime to control greenhouse gas emissions from international shipping, and a draft of the actual reduction mechanisms themselves, for further consideration by IMO's Marine Environment Protection Committee (MEPC). Light pollution: Artificial light at night is one of the most obvious physical changes that humans have made to the biosphere, and is the easiest form of pollution to observe from space. The main environmental impacts of artificial light are due to light's use as an information source (rather than an energy source). The hunting efficiency of visual predators generally increases under artificial light, changing predator prey interactions. Artificial light also affects dispersal, orientation, migration, and hormone levels, resulting in disrupted circadian rhythms. Fast Fashion : Fast fashion has become one of the most successful industries in many capitalist societies with the increase in globalisation. Fast fashion is the cheap mass production of clothing, which is then sold on at very low prices to consumers. Today, the industry is worth £2 trillion.

Page 244

Environmental Impacts : In terms of carbon dioxide emissions, the fast fashion industry contributes between 4–5 billion tonnes per year, equating to 8–10% of total global emissions.Carbon dioxide is a greenhouse gas, meaning it causes heat to get trapped in the atmosphere, rather than being released into space, raising the Earth's temperature – known as global warming. Alongside greenhouse gas emissions the industry is also responsible for almost 35% of microplastic pollution in the oceans.Scientists have estimated that there are approximately 12–125 trillion tonnes of microplastic particles in the Earth's oceans.These particles are ingested by marine organisms, including fish later eaten by humans. The study states that many of the fibres found are likely to have come from clothing and other textiles, either from washing, or degradation. Textile waste is a huge issue for the environment, with around 2.1 billion tonnes of unsold or faulty clothing being disposed per year. Much of this is taken to landfill, but the majority of materials used to make clothes are not biodegradable, resulting in them breaking down and contaminating soil and water.

Fashion, much like most other industries such as agriculture, requires a large volume of water for production. The rate and quantity at which clothing is produced in fast fashion means the industry uses 79 trillion litres of water every year. Water consumption has proven to be very detrimental to the environment and its ecosystems, leading to water depletion and water scarcity. Not only do these affect marine organisms, but also human's food sources, such as crops. The industry is culpable for roughly one-fifth of all industrial water pollution.

Page 245

4- human environmental protection

Environmental protection is the practice of protecting the natural environment by individuals, organizations and governments. Its objectives are to conserve natural resources and the existing natural environment and, where possible, to repair damage and reverse trends. Clean Ocean Project poster: Due to the pressures of overconsumption, population growth and technology, the biophysical environment is being degraded, sometimes permanently. This has been recognized, and governments have begun placing restraints on activities that cause environmental degradation. Since the 1960s, environmental movements have created more awareness of the multiple environmental problems. There is disagreement on the extent of the environmental impact of human activity, so protection measures are occasionally debated. In the industrial countries, voluntary environmental agreements often provide a platform for companies to be recognized for moving beyond the minimum regulatory standards and thus support the development of the best environmental practice. For instance, in India, Environment Improvement Trust (EIT) has been working for environmental and forest protection since 1998. A group of Green Volunteers gets a goal of Green India Clean India concept. CA Gajendra Kumar Jain a Chartered Accountant, is the founder of Environment Improvement Trust in Sojat city a small village of State of Rajasthan in India In developing countries, such as Latin America, these agreements are more commonly used to remedy significant levels of non-compliance with mandatory regulation.