Living in a Water-Stressed World

Global companies in key industries are already losing billions as a result of the global water crisis. The research shows how US$15.5 billion has been stranded, or is at risk.

The report focuses on four case studies taken from key sectors with high levels of water usage: oil & gas, electric utilities, coal, and metals & mining.

The case studies include the Keystone oil pipeline in Canada, the epicenter of recent environmental protests and legal battles; the Pascua-Lama gold mine straddling the border of Chile and Argentina; the controversial Carmichael coal mine, run by the Adani Group in Australia; and the Oyster Creek nuclear facility in the US.

Changes in water regulations, high levels of pollution, and community opposition are all driving stranded assets.

The projects represent the tip of the iceberg as high-quality water supplies are growing scarce.

Water scarcity is a rapidly growing concern around the globe, but little is known about how it has developed over time. This study provides a first assessment of continuous sub-national trajectories of blue water consumption, renewable freshwater availability, and water scarcity for the entire 20th century. Water scarcity is analysed using the fundamental concepts of shortage (impacts due to low availability per capita) and stress (impacts due to high consumption relative to availability) which indicate difficulties in satisfying the needs of a population and overuse of resources respectively. While water consumption increased fourfold within the study period, the population under water scarcity increased from 0.24 billion (14% of global population) in the 1900s to 3.8 billion (58%) in the 2000s. Nearly all sub-national trajectories show an increasing trend in water scarcity. The concept of scarcity trajectory archetypes and shapes is introduced to characterize the historical development of water scarcity and suggest measures for alleviating water scarcity and increasing sustainability. Linking the scarcity trajectories to other datasets may help further deepen understanding of how trajectories relate to historical and future drivers, and hence help tackle these evolving challenges.

Climate change. Unsurprisingly, climate change is one of the main reasons behind the global water crisis. ...

Natural disasters. ...

War and conflict. ...

Wastewater. ...

Water waste. ...

Lack of water data. ...

Lack of international cooperation on shared water sources. ...

Lack of infrastructure.

Water scarcity threatens the health and development of communities around the globe. Climate change is intensifying the problem, pushing governments to find more innovative, collaborative ways to address water stress.

Water scarcity is often divided into two categories: physical scarcity, when there is a shortage of water because of local ecological conditions; and economic scarcity, when there is inadequate water infrastructure. 

The two frequently come together to cause water stress. For instance, a stressed area can have both a shortage of rainfall as well as a lack of adequate water storage and sanitation facilities. Experts say that even when there are significant natural causes for a region's water stress, human factors are often central to the problem, particularly with regard to access to clean water and safe sanitation.

"Almost always the drinking water problem has nothing to do with physical water scarcity," says Georgetown University's Mark Giordano, an expert on water management. "It has to do with the scarcity of financial and political wherewithal to put in the infrastructure to get people clean water. It's separate."

At the same time, some areas that suffer physical water scarcity have the infrastructure that has allowed life there to thrive, such as in Oman and the southwestern United States.

A variety of authorities, from the national level down to local jurisdictions, govern or otherwise influence the water supply. In the United States, more than half a dozen federal agencies deal with different aspects of water: the Environmental Protection Agency (EPA) enforces regulations on clean water, while the Federal Emergency Management Agency (FEMA) prepares for and responds to water disasters. Similar authorities exist at the state and local levels to protect and oversee the use of water resources, including through zoning and rehabilitation projects.

Which regions are most water-stressed?

The Middle East and North Africa (MENA) is the worst off in terms of physical water stress, according to most experts. MENA receives less rainfall than other regions, and its countries tend to have fast-growing, densely populated urban centers that require more water. But many countries in these regions, especially wealthier ones, still meet their water needs. For example, the United Arab Emirates (UAE) imports nearly all of its food, alleviating the need to use water for agriculture. The UAE and other wealthy MENA countries also rely heavily on the desalination of abundant ocean water, albeit this process is an expensive, energy-intensive one. 

Meanwhile, places experiencing significant economic scarcity include Central African countries such as the Democratic Republic of Congo, which receives a lot of rain but lacks proper infrastructure and suffers from high levels of mismanagement.

Even high-income countries experience water stress. Factors including outdated infrastructure and rapid population growth have put tremendous stress on some U.S. water systems, causing crises in cities including Flint, Michigan, and Newark, New Jersey.

What are its impacts on public health and development?

Prolonged water stress can have devastating effects on public health and economic development. More than two billion people worldwide lack access to safe drinking water; and nearly double that number—more than half the world's population—are without adequate sanitation services. These deprivations can spur the transmission of diseases such as cholera, typhoid, polio, hepatitis A, and diarrhea.

At the same time, because water scarcity makes agriculture much more difficult, it threatens a community's access to food. Food-insecure communities can face both acute and chronic hunger, where children are more at risk of conditions stemming from malnutrition, such as stunting and wasting, and chronic illnesses due to poor diet, such as diabetes.

How has water factored into international relations?

Many freshwater sources transcend international borders, and, for the most part, national governments have been able to manage these resources cooperatively. Roughly three hundred international water agreements have been signed since 1948. Finland and Russia, for example, have long cooperated on water-management challenges, including floods, fisheries, and pollution. Water-sharing agreements have even persisted through cross-border conflicts about other issues, as has been the case with South Asia's Indus River and the Jordan River in the Middle East.

However, there are a handful of hot spots where transboundary waters are a source of tension, either because there is no agreement in place or an existing water regime is disputed. One of these is the Nile Basin, where the White and Blue Nile Rivers flow from lakes in East Africa northward to the Mediterranean Sea. Egypt claims the rights to most of the Nile's water based on several treaties, the first dating back to the colonial era; but other riparian states say they are not bound to the accords because they were never party to them. The dispute has flared in recent years after Ethiopia began construction of a massive hydroelectric dam that Egypt says drastically cuts its share of water.

Transboundary water disputes can also fuel intrastate conflict; some observers note this has increased in recent years, particularly in the hot spots where there are fears of cross-border conflict. For example, a new hydropower project could benefit elites but do little to improve the well-being of the communities who rely on those resources.

Moreover, water stress can affect global flows of goods and people. For instance, wildfires and drought in 2010 wiped out Russian crops, which resulted in a spike in commodities prices and food riots in Egypt and Tunisia at the start of the Arab uprisings. Climate stress is also pushing some to migrate across borders. The United Nations predicts that without interventions in climate change, water scarcity in arid and semi-arid regions will displace hundreds of millions of people by 2030.

What are international organizations and governments doing to alleviate water stress?

There has been some international mobilization around water security. Ensuring the availability and sustainable management of water and sanitation for all is one of the UN Sustainable Development Goals (SDGs), a sweeping fifteen-year development agenda adopted by member states in 2015. Smart water management is also vital to many of the other SDGs, such as eliminating hunger and ensuring good health and well-being. And while the Paris Agreement on climate does not refer to water explicitly, the United Nations calls [PDF] water management an "essential component of nearly all the mitigation and adaptation strategies." The organization warns of the increasing vulnerability of conventional water infrastructure, and points to many climate-focused alternatives, such as coastal reservoirs and solar-powered water systems.

Governments and partner organizations have made progress in increasing access to water services: Between 2000 and 2017, the number of people using safely managed drinking water and safely managed sanitation services rose by 10 percent and 17 percent, respectively. But the pace of climate change and the COVID-19 pandemic have presented new challenges. Now, many countries say they are unlikely to implement integrated water management systems by 2030, the target date for fulfilling the SDGs. 

Still, some governments are taking ambitious and creative steps to improve their water security that could serve as models for others:

Green infrastructure. Peruvian law mandates that water utilities reinvest a portion of their profits into green infrastructure (the use of plant, soil, and other natural systems to manage stormwater), and Canada and the United States have provided tens of millions of dollars in recent years to support Peru's efforts [PDF]. Vietnam has taken similar steps to integrate natural and more traditional built water infrastructure.

Wastewater recycling. More and more cities around the globe are recycling sewage water into drinking water, something Namibia's desert capital has been doing for decades. Facilities in countries including China and the United States turn byproducts from wastewater treatment into fertilizer.

Smarter agriculture. Innovations in areas such as artificial intelligence and genome editing are also driving progress. China has become a world leader in bioengineering crops to make them more productive and resilient.